Model Evaluations of MLPA North Central Coast Regional Stakeholder Group Marine Protected Area Proposals (March 2008)

"Modeling Work Group" of the MLPA Master Plan Science Advisory Team (SAT)

MLPA I-Team staff, Bjorkstedt, Botsford, Costello, Gaines, Hilborn, Walters, White

BRTF Address: April 22, 2008

Dr. Christopher Costello*

*Bren School, UC Santa Barbara Costello@bren.ucsb.edu

Why models help inform good decisions

- How will we know if a given MPA network achieves goals of MLPA?
- Initial models generated size/spacing guidelines
- Refine/extend using best available science to:
 - Inform initial MPA networks
 - Evaluate and help improve on stakeholder proposals
 - Inform tradeoffs inherent in a given MPA proposal
 - Compare across proposals
 - Inform monitoring
 - Inform management changes outside MPAs

Focusing on two models

- Initially 4 models (Botsford, Walters, Costello, Hilborn)
- Condensed into 2 models:
 - <u>UC Davis (UCD):</u> focused on sustainability, current status of stocks as predictor of future, considers species individually
 - <u>EDOM:</u> focused on fleet dynamics, economic returns, optimization, multi-species fisheries
- Models have been vetted with SAT, inputs are consistent

Basic model features

- Spatially-explicit habitat data, MPA locations, larval dispersal, adult home range, dynamics to equilibrium
- Predict equilibrium spatial larval supply, biomass, harvest
- <u>Critical question</u>: Future management in open areas?
- Scenarios considered:
 - 1. Conservative (both models)
 - 2. Maximum Sustainable Yield (MSY) -type (both models)
 - 3. Unsuccessful (both models)
 - 4. Current management as predictor of future (UCD only)
 - 5. Spatially optimized for economic returns (EDOM only)

Proposal evaluations

- Four evaluations for each proposal
 - 1. Predicted spatial effects on biomass for range of species
 - 2. Predicted spatial effects on yield and profits
 - 3. Tradeoff between yield and biomass
 - 4. Sensitivity of predictions to
 - Larval dispersal assumptions
 - Adult home range assumptions
 - Future fishing mortality (level and distribution)

An initial observation

- Proposals have converged significantly in both economic and conservation dimensions
- In many cases assumptions about fishing outside dwarf differences among proposals

Summary of UC Davis model

- Ranking for conservation value (1 is best):
 - (1) Prop 4, (2) Prop 1-3, (3) Prop 2-XA
 - Differences tend to diminish as management outside becomes more conservative
 - If management very conservative, all proposals equal.
- · Ranking for yield
 - (1) Prop 2-XA, (2) Prop 1-3, (3) Prop 4
 - If management very unsuccessful, all proposals equal

Summary of EDOM Model

- Ranking for conservation value depends on future fishery management scenario:
 - Conservative/MSY: (1) Prop 2-XA, (2) Prop 4, (3) Prop 1-3
 - Optimize Profit/Unsuccessful: (1) Prop 4, (2) Prop 2-XA, (3) Prop 1-3
- Ranking for yield –depends on future fishery management scenario:
 - Conservative: (1) Prop 1-3, (2) Prop 4, (3) Prop 2-XA
 - MSY-type/Optimal: (1) Prop 1-3, (2) Prop 2-XA, (3) Prop 4
 - Unsuccessful: (1) Prop 2-XA, (2) Prop 4, (3) Prop 1-3

Spatial results

- What are spatial implications for conservation?
- MPA size and placement interacts with habitat, dispersal, home ranges to create complex spatial consequences.
- Use spatially-explicit models to predict:
 - Larval supply across space (UCD Model)
 - Biomass of modeled fish species across space (EDOM Model)

Sensitivity Analysis

- Larval dispersal distance
- Home range of adults
- How sensitive is biomass prediction?
- How sensitive is yield prediction?
- How sensitive is ranking of proposals?

Summary of sensitivity analyses

- Package performance is sensitive to home range assumptions, relatively insensitive to larval dispersal distance assumption.
- But, ranking of packages is insensitive to these multipliers
 - Conservation value as a metric of performance
 - Yield as a metric of performance

Surface plots

- How will each package affect species with other life-history traits?
- Set up "generic" model, assess conservation implications for a range of species types.

Summary of surface plots

- Under Proposal O, small range of species life histories that will be sustainable (under moderately unsuccessful mgt.)
- All proposals have generally good performance for range of life histories
- Some species may not benefit

A general recommendation for future use of models

- Integrate models more completely into planning process
 - Early in the process, possibly as tools for stakeholders
 - Integral part of evaluation process
- Continue model development
 - Better represent population dynamics, larval dispersal, redistribution of fishing effort, system variability
 - Model calibration
- Continue to build on foundation of size/spacing guidelines